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EXECUTIVE SUMMARY

Current vulnerability/letbality analysis methodology is concerned strictly with
the local damage caused by penetration of KE penetrators or shaped charge jets.
These damage mechanisms are of primary interest and have been extensively studied,
both from a theoretical and a practical basis; however, another damage mechanism of
considerable significance is ballistic shock. As tactical combat vehicles are becoming
better protected against perforating impacts, the incidence of component and structure
failure due to ballistic shock is becoming more significant In terms of the overall
damage levels. Current methodology does not predict or account for these ef :'ts in a
satisfactory and complete manner. This report will attempt to address one a, ct of
this complex problem as a genesis to the development of a suitable vulnerabiaty/
lethality methodology that includes ballistic shock damage mechanisms.

Whereas the damage directly associated with the penetration event is considered
local in nature, there can be global effects that degrade and incapacitate vehicle
systems. These global effects arise from the forced vibratory loading due to the
impact of the attacking munition. Such effects include far field structural failures,
inoperable electro-optical devices and biological damage. As an initial assessment,
this report will consider the gross motion of heavy structures subjected to
nonperforating impacts (impulse loads) and what effect the structure interface has on
the system dynamics. The structures are modeled as a single-degree-of-freedom
(SDOF) system and a two-degree-of-freedom (2DOF) system to represent a turretless
vehicle and a turreted vehicle, respectively. The turret and hull are idealized as rigid
bodies connected together by a spring Interface of variable stiffness. The dynamical
equations of motion are derived under the condition of no slip and consist of two
independert equations for each of the four main regimes of motion that the 2DOF
system can occupy. The second order, ordinary differential equations are coupled and
nonlinear. Analytic solutions are determined by linearizing and uncoupling the
equations via modal analysis techniques. Due to physical discontinuities at the impact
points, these analytical solutions are only valid in the continuous regimes of motion of
the 2DOF system. Conservation of moment of momentum is used to derive transition
equations that bridge these discontinuities by allowing the calculation of new initial
conditions for the next regime of motion that the system enters. The local time
histories of each regime of motion are then pieced together to yield the global
dynamical response. By incorporating these analytical solutions within a FORTRAN
computer simulation, the gross motion of the vehicles under varying impacts can be
determined. A parametric study of the motion is performed by varying the stiffness of
the turret interface and the physical properties of both the hull and turret. It is shown
that system stability is a strong function of the mass and geometry and a weak function
of the stiffness parameter. It is also shown that the mass of the turret has a strong
damping effect on the motion of the hull due to the spring interface, This effect is
more pronounced the stiffer the interface becomes. In general, it can be concluded that
though th. system stability is highly dependent on the mass and geometry of both the
turret and hull, the effect of the stiffness associated with the turret interface can

xi

I -P =' . ""-= 'i -r -- I



stabilize the system under ceratin conditions and as the stiffness of the turret interface
increases, the response of the 2DOF system becomes more like a rigid body, which is
to be expected.
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1. INTRODUCTION

With the advent of live-fire testing involving heavily armored structures, it has
become apparent that damage mechanisms other than penetration and perforation have
considerable sigificance in terms of munition lethality and target vulnerability.
Specifically, ballistic shock effects have become more pronounced In terms of the
overall damage levels sustained by armored targets during these tests, both for
perforating and nonperforating impacts. Though the target damage assessment
includes the effects associated with ballistic shock, current vulnerability and lethality
analyses do not. In light of this situation, the U.S. Army has identified the need to
better understand the ballistic shock phenomenon and to modify and upgrade current
vunerability and lethality methodologies to satisfactorily address this issue,

An in-house research effort was initiated during the 1991 time frame by the U.S.
Army Ballistic Research Laboratory (BRL), which was transitioned into the current
U.S. Army Research Laboratory (ARL). The programmatic approach was to look at
various ways to calculate and predict damage levels associated with ballistic shock
and incorporate the most reasonable method within a current vulnerability
methodology, with reasonable being defined as resource efficient, technically correct
and answers that are simple and robust, so to speak, This report details the research
efforts of one of the methods proposed to address certain areas within the overall
ballistic shock program, the rigid body method (RBM). The author believes that this
method has its greatest utility In addressing ballistic shock effects in terms of crew
casualty predictions and assessments due to acceleration levels and structural failure
of the turret-hull interface. Before discussing the research that forms the basis of the
method in detail, it is appropriate to discuss shock in general and the applicability of
this method.

Shock is generally defined as a relatively large force applied suddenly and
quickly with a time period that Is relatively short as compared to the natural period of
the structure that is being subjected to this force. Ibis transient force can produce
damage local to the point of application of this force and also vibratory forces that
affect the structure beyond the local point of application. These nonlocal effects are
called the "global effects" and they are the focal point of this research effort.

The analytical technique termed "RBM" was investigated for a number of
reasons. First and foremost, the assumptions associated with this method allow the use
of some powerful mathematical techniques such as modal analysis, that, in
conjunction with engineering dynamics, provide well-formulated equations of motion
that are solvable either analytically or numerically. Secondly, this method should
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provide the most conservative answer of the proposed methods in terms of structural
survivability, thus setting an upper bound. Lastly, modeling of the physical system
becomes relatively simple and unambiguous, ,'equiring only computational algorithms
and methods that are not time intensive. For these reasons, this method was
investigated and the results generated using this method will be compared with
empirical data generated from test programs when available.

A brief technical synopsis of this method and general vibration theory is
presented here to facilitate a greater understanding and to present the advantages and
limitations of this approach, as seen at this time. A structure, whether considered as a
single component with isotropic material properties or as a conglomeration of
components that may or may not share similar material properties, has associated with
it a structural parameter called the natural frequency(s). The natural frequency, being a
function of the material, geometry, and boundary conditions, is an hiherent property of
the structural system only, not any external conditions. Thus the natural frequency, or
free vibration frequency, is the frequency or frequencies at which the structure
oscillates after the external forcing function, i.e,, the initiating impulse, is removed.
This natural frequency (or frequencies) of a structure define the structure's response to
external forces; i.e., when the structure is subjected to a broad-frequency acceleration
environment such as an impact, the structure will absorb the energy more easily at
certain frequencies, the natural frequencies of the system. So the acceleration response
spectrum of the shock environment will have specific values at each natural frequency,
the sum of which determines the total response of the structure. These acceleration
values at each natural frequency specify the deformations and stresses induced in the
structure with the lowest frequency referred to as the fundamental frequency. The
greatest deformation, and therefore, the largest stresses and strains, occur at the
fundamental frequency of the structure, in general. It is this fundamental frequency
that we are interested in because It is associated with the largest peak acceleration
values, and therefore, has the greatest potential for damage. If we can assume that the
fundamental frequency of a real structure is close in magnitude to a similar structure
modeled as a rigid-body, then this method should be useful.

This Idealized assumption that the structure behaves as a rigid body requires
that the structural stiffness or rigidity be high, or conversely, the structural damping
approach zero since the damped frequency is defined as the natural frequency of a
system with damping, or mathematically:

Wd Wnx 47 (1)

where - c/(2mWn)
Wd - damped frequency
Wn- natural frequency of system with no damping
mn - mass
c - damping constant
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Thus, when the damping constant c approaches zero, then the damped frequency
approaches the natural frequency, as shown in equation 1. If we assume a structure
composed of a very small number of components, we could determine the natural
frequencies of each of these simple components, but we could not, in general,
determine the natural frequencies of the structure from these individual frequencies.
The structural frequencies are functions of the mass, stiffness, and damping of each
component and the stiffness and damping asssociated with the interface between
components. Thus to analyze anything but an extremely simple model requires a finite
element analysis (PEA) program. So the following assumptions are necessary for
rigid-body motion. The ratio of the stiffness of each individual component and their
interfaces to the stiffness of an equivalent structure of homogeneous material should
approach unity, where the stiffness is a function of material, material impedance at the
interfaces, and structural rigidity. Thus the damping terms must approach zero or be
very small compared to the total mass, as shown In equation 1. For an application of
very heavy targets with rigidly welded plates, this assumption is considered reasonable
at this time.

Assuming rigid-body motion, we can model an armored vehicle as a simple
arrangement of two blocks connected by an equivalent spring constant representing
the stiffness of the bolted turret/hull Interface. This Is a two-degree-of-freedom
(2DOF) system requiring the solution of two simultaneous, second order, nonlinear,
inertially and elastically coupled equations. This system can be solved two ways,
either numerically or analytically. Analytic solutions for this problem were
determined; though, in general there are very few known analytic solutions to
nonlinear equations. In order to do this the nonlinear equations were linearized and
then uncoupled using modal analysis techniques. This procedure allows for the
relatively simple generation of analytic solutions for various forcing functions where
the forcing function chosen is an analytic representation or model of the shock
producing impact. The analytic representations under consideration for the forcing
function are the Dirac delta function (actually a distribution) and a single pulse sine
wave. Both of these functions were examined for derivation of the equations of motion
but the system examined was the free vibration case since the purpose of this initial
report is methodology development only. Development and validation of the specific
forcing functions for ballistic shock modeling is currently being accomplished by the
University of Dayton Research Institute (UDRI) as part of the overall shock program.
Finally, one of the long term goals would be to solve the system of nonlinear equations
numerically for comparison to the linear solutions.

The majority of research efforts dealing with rigid body motion lies in the field
of civil/mechanical engineering, specifically, structural dynamics. A literature search
was conducted and, though the relevant papers had strong civil orientations, the
underlying physical and mathematical principles apply to this particularly military
application.

The prevailing trend in structural dynamics is to assume that structures subjected
to dynamic loads or excitations behave as a deformable continuum. There are
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numerous examples of physical phenomena that, under certain conditions, contradict
this assumption and, in fact, show that rigid body motion is a significant response
mechanism. The collapse of the Cypress Street Viaduct (1880) during the 1989 Loma
Prieta earthquake was kinematic in nature [I] and the Transamerica building exhibited
a significant amount of rotation or rocking about its base [2] during the same event.
Other examples of this rigid body behavior include the cyclic rocking, with the
corresponding stretching of the base anchor bolts, of the relatively tall and slender
petroleum cracking towers during the Arvin-Tbhachapi earthquake, California, 21 July
1952 [3]. The primary reason for loss of structural integrity in these events was the
rocking, and in some cases, subsequent toppling of these structures, and not due
explicitly to some material failure mechanism. These events highlight the need for a
better understanding of how structures undergoing rigid body motion respond to
external stimuli.

The simplest way to model this behavior is by analyzing the rocking motion of a
single rigid block on a rigid foundation. This has been done extensively In the
literature, In recent times by Housner [3] and then expanded upon with variations to
include flexible foundations of the two spring type [4] and the Winkler type [4,5,6],
and both harmonic and random base excitations [7,8,9,10]. A comprehensive review
of the research up to 1980 was compiled by Ishlyama [11] and is a good introduction
to this field. A more recent paper by Lipscombe and Pellegrino [12] compares
experimental data from single rocking blocks to predicted data from the theoretical
models of such systems with some interesting insights and conclusions.

This characterization of a structure as a single rigid body, though desirable In
terms of Its simplicity, does not adequately address the complexities inherent in most
typical man-made structures of interest. Thus a few researchers have extended the
research from single-degree-of-freedom (SDOF) systems such as the single rocking
block to multi-degree-of-freedom (MDOF) mechanisms, some as simple as two
stacked blocks [131 and others as complex as multiple story structures composed of
individual rigid bodies [14,15,16,17]. These researchers have considered systems of
interest comprised of rigid bodies stacked upon each other with no provision for any
type of fastening arrangement. These rigid body assemblies represent precast concrete
building systems without considering any physical connection between the individual
rigid bodies. This report will attempt to extend the understanding of the behavior of
such structures by addressing the dynamics of a rigid body system whereby the rigid
bodies are interconnected or fastened together with springs of variable resistance to
model physical connectors such as reinforcing bars, bolted connections, or a turret/
hull interface. This report begins to address what effect the fasteners, geometry
variations, and mass considerations have on the system dynamics.

One idealization of such a MDOF system can be made by considering two
symmetrically stacked blocks inter'connected by two springs where the top block can
represent the turret of an armored vehicle with the bottom block representing the hull.
The blocks are allowed to rotate about their edges and the coefficient of friction is
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considered large enough to preclude any slip; thus, the poles of rotation can be thought
of, in a kinematic sense, as a pin constraint. A mathematical model is developed for
such a system and the resulting equations of motion are solved analytically. The
solutions are encoded within a computer program and the time histories of the two
blocks are examined with respect to parameter variations of the masses and spring
constants.

Since the time histories are determined as functions of the absolute rotation
angles of each block, and kinematic expressions can be derived for velocities and
accelerations at any point of the rigid bodies as a function of these absolute
coordinates, then the g-levels at any point can be determined to assess crew
incapacitation values. Also, failure of the bolted interface between the hull and turret
can be calculated for known material and geometry specifications. The modeling and
derivations are presented next.
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2. MATHEMATICAL MODELING

The first system to consider for simplicity and possible insights into more
complex systems, is a single rigid block rocking on a horizontal surface with attached
springs. The assumptions with this model are that the springs operate only in the
linear elastic range and are massless. See Figure 1 below,

Y

h,

.. ~ 1 7r ... .... oo 77..

__ _ _ 0 No__ __ __ __ __

2 b1

2 a, --> Height of Block B1  H .... > Free Length of Springs R1, R2

2 bI --> Width of Block BI hi .... > Height of Center of Mass

C1 ---- > Center of Mass n- ---- > Distance from Edge to Center of Mass
11, 12 --> Distance from Block Center to Springs R1 and R2 respectively

FIGURE 1 - Single Block with Springs R1 and R2

Now consider block B1 with some initial angular displacement, as shown in
Figure 2. Note that the block rocks about its comers P1 and P2 , and, for the shown
configuration, spring R1 remains at a constant length while spring R2 is In tension.
The block will eventually rotate clockwise and impact the horizontal surface
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0 xHt I R2

C- .... > Center of Mass
H -.-. > Free Length of Springs R1, R2
K1,K2 .... > Spring Constants of Springs R1 and R2 respectively
L .... > Length of Springs R1 and R2 , as an implicit function of 0

FIGURE 2 - Single Block with Displacement 0

and then begin to rotate about point P2. It Is this transition, from rocking about
corner P1 to rocking about comer P2, that Is one source of nonlinearity for this
seemingly simple problem. Thus the equation of motion describing this rocking will
be discontinuous at 0 = 0, which implies that the character of the equation will
differ according to the sign of the angle of displacement, 0. Taking moments about
points P1 and P2 gives the following equations of motion.

IpI 0 + Mg (nlcosO-hlsinO)+K2(l H/L)(b1 +12)[HcosO+(bj +12)sinO]-O (2a)

for 0 > 0 where Ip, - Ic, + M(n1
2 + h1

2)

'p2 6 - M8[(2 bl-nl)cosO+hlsinO))+K(1.-H/L)(bl +ll)[HcosO +(bl+ll)sin01=O (2b)

for 0 < 0 where lp2 = Ic, + M[(2 b,-n 1 9+ h12 ]

These are the general forms of the equations of motion. If one assumes small
displacements ( 0 < 200 ), a homogeneous distribution of mass, and that no gap
exists between the ground and the reference frame (H-0), then the simplified
equations are:
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1P1 ' + [K2(bj+12 9-Mgaj] 0 = -Mgbi for 0 > 0 (3a)

1p2 0 + [Kj(blj+l)-Mga,] 0 = Mgbj for 0 < 0 (3b)

An explanation concerning the validity of the previous assumptions is required at
this time, One assumes small displacements in order to eliminate the nonlinearities
associated with the trigonometric functions. Thus, the simplified equations are valid
only as long as the rotation of the rocking block remains within the range of the small
angular displacements. The second assumption concerning a homogeneous
distribution of mass simply implies that the block's center of gravity coincides with
the geometric center. This is a reasonable assumption for most man-made structures
that would be considered as rigid body structures exhibiting the type of response this
study addresses. The last assumption is more subtle than' the other two and requires a
more detailed explanation,

As stated earlier in this report, H represents the free length of the spring, but in
actuality, it is only an artifact of how the system has been modeled. H could have been
modeled as the distance from the horizontal base to the block, i.e., the increase in the
length of the spring, with a spring free length of zero. This would effectively remove
H from the equations since the spring force acting on the block is a function of e only.

There are two important aspects or features that equations 3a and 3b bring to light
for this relatively simple system which should hold true for more complex or MDOF
systems also. The right-hand side (RHS) changes sign from equation 3a to equation
3b. This nonlinearity, mentioned previously, is due to the transition from rocking
about one corner to the other corner. The second concerns the terms or coefficients
associated with the displacement term, 0. The addition of the springs to the problem
can change the character of the equations. If the spring constants K1 and K2 are set
equal to zero, then the equations have negative stiffness. If the spring constants and
certain physical parameters are great enough In magnitude, then it is possible for the
equations to have positive stiffness. This Is a significant feature which directly affects
the form of the solution to these equations, as will be discussed next.

The solution set to equations 3a and 3b is presented below in equations 4a and
4b, respectively. Since the equations of motion are discontinuous at 0 - 0, a solution
set Is provided for both conditions, e > 0 and 8 < 0 by using the sgn function.

GO) = DI cos _ t + D2 sin 7 t -(B/A) sgn 0 for A> 0 (4a)

0(1) = D, cosh 'Aj t + D2 sinh ýA t + (BIA) sgn 0 for A< 0 (4b)

8



where A = IAI since the sign of A is accounted for by the f'rmn of tAe solutions

and specifically: A = fK2(bl+12 )2- MgajJ Ipl= [K1(bl4ll)2- Mgalj] lp2

B = Mgbi/Ipj = Mgb/1p 2

D1 = 0(0) + BIA D2 = 6 (0)/IA for A > 0

D =- 0(0)- BIA D2 = 6(0)/,,/ for A < 0

Thus It Is evident that the sign of the displacement angle 0 affects only the particular
term of the total solution while the sign of the parameter A affects both the
homogeneous part and the particular part of the total solution. The significance of this
is that once the geometry of the block is defined then the sign of parameter A is
determined by the value of the stiffness term Ki. The sign of A is determined by
equation Sa and 5b presented below and as initially defined above.

A = [K2(bj+2V -Mgall / IpJ for 0 > 0 (5a)

A = [KI(b,+l, - Mgall / IP2 for 0 < 0 (Sb)

By setting the parameter A to zero in equations 5a and 5b and solving for the K4 term,
the threshold value for when the character of the solution changes from equation 4a to
4b or vice versa can be determined readily. These equations are presented next.

K2 = Mgall(bl+12) for 0 > 0 (6a)

Ki = Mgal/(bj+l,9 for 0 < 0 (6b)

Thus, when the value of K2 is greater than the value as determined In equation 6a then
the solution is sinusoldal in nature, and, If less, the solution is hyperbolic in character,
A similar statement can be made for the K1 term. The practical significance of this
phenomenon will be discussed in the results section of this report.

The nonlinearity due to transition of the block from the 0 > 0 case to the 0 < 0
case requires that the solution consist of two solutions, one from each of the linear
regimes. Thus the total or global solution will consist of two local solutions which can
be written in closed form due to the linear nature of the equations. This leads to an
important consideration: how does the transition from rocking about one comer to
rocking about the other corner affect the global solution? The two local solutions are
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tied together by simply using the final conditions of the pre-impact or pre-transition
regime as the initial conditions for the next regime. This implies that there is no
energy loss during the transition and one would expect that the block would rock
through an angle 0 - -00 where 0o is the initial displacement of the block (assuming no
initial velocity). Therefore, the block would continue to rock forever for this
conservative case of no energy dissipation. Practically, this case is not true, because
during the transition, which is really an impact of the block with its supporting
surface, there is an energy loss, In classical mechanics, this energy loss is accounted
for by a proportionality constant (more formally known as a restitution coefficient, C,)
that relates the pre-impact velocity to the post-impact veloity such as equation 7.

6 f- C 6 where 0 < C _. 1 (7)

Equating the kinetic energy of the block immediately prior to impact and Immediately
after Impact (since the potential energies are equivalent) with a
proportionality factor, R, to account for the reduction in energy due to the Impact
gives equation 8.

I i2 i• RI 2
11J'2 6;=R 1,d (8)

Realizing that lp, = Ip2 for a homogeneous block, then the reduction in energy due to
impact can be represented as R below.

-- i.e,, R,=C (9)2

Now, If the impact can be considered as perfectly plastic, i.e., the block does not
bounce or slip, then the block's rotation is smooth and transits to the other pole of
rotation in such a manner that conservation of angular momentum can be assumed.
This assumption is pivotal in that it allows the derivation of an analytical expression
relating the pre-impact and post-impact velocities to account for the discontinuity that
occurs at 0 = 0. See the appendix for the derivation of the general equation for
conservation of moment of momentum. Equating the moment of momentum about
point P1 Immediately prior to Impact and Immediately after impact results in the
following relationship.

1p, 0t-2 m b, 61 (b, cosO - a, sinO) - Ii2d 1 noting 1p,1 wP 12 (10)
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And since 0 - 0 during impact, equation 10 can be simplified with some rearranging.

C 6f 3( 2
2a2 b2 (1

What this equation implies is that even if one assumes the idealized conditions of a
smooth transition from one pole of rotation to the other and rigid body conditions,
there Is going to be an energy loss during impact that is strictly a function of the
geometry of the blockl Thus, using equation 9, this energy loss can be represented as

energy loss - I -R or energy loss - 1- C2 (12)

To minimize the energy loss during transitlon due to the block geometry, the last term
of equation 11 must approach zero, which mathematically implies that a, >> bl, i.e.,
tall, slender blocks. Conversely, short, wide blocks where b, >> a, corresponds to the
maximum amount of energy loss. Recognizing that the theoretical lower limit of C is
zero, it Is a trivial exercise to show that this occurs when the ratio of b, to a1
approaches the value 1.414 or ,6. Also, It Is Interesting to note that If the ratio of b, to
a, Is less than 1.414, then C will be negativel Mathematically, this Implies that the
post-impact velocity is of opposite sign from the pre-impact velocity so there is a
instantaneous change In the direction of rotation of the block. Physically, this means
that the pole of rotation of the block does not change to the other comer, but that the
block bounces back, maintaining the same pole of rotation. Practically, this does not
occur and this condition implies that the block bounces, slips and leaves the surface of
contact, thereby changing the scope of this problem and Invalidating the assumption of
conservation of moment of momentum. A recent paper by Lipscombe and Pellegrino
[12] discusses this phenomenon in greater detail and concludes that the SDOF model
with the assumption of conservation of moment of momentum is valid for slender
blocks, but that this method is often inaccurate for short blocks where bouncing tends
to be more pronounced. The paper also presents a comparison of experimental data
for varying block geometries and three methods to model the phenomenon termed as
"bouncing".

Although the condition represented by equation 6 with the theoretical limits of
the proportionality factor C to model the impact or transition is necessary, it Is not
sufficient. By using the conservation of angular momentum principle, a more
conservative estimate of the theoretical limits of C based on the geometry of the ri8id
body can be determined. This principle will also apply to more complex cases, as is
discussed next.

The next step is to consider a more complex system or MDOF system (Figure 3),

now that the relatively simpler system has provided some Insights into the modeling
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FIGURE 3 - Model of Two Stacked Blocks

and form of the equations of motion. This system consists of two blocks stacked
together that are connected via springs and are placed on a rigid horizontal surface.
All contact conditions are no-slip, the springs are massless and linear, and the system
Is subject to free vibration only, L.e., no external applied forces, The model of the
system portrays the two blocks as separated by the length of the two springs but in
actuality the system under consideration in this report has the blocks in direct contact,
This was just done as a visualization aid during the modeling process. As with the
single block model where this distance was represented by H, the same modeling
artifice was used here and It is assumed that H is zero to get the cbrrect equations for
this particular model.

This system of two rocking blocks exhibits the same character as the single
rocking block in the sense that the equations change when the displacernmnt angles

12



change sign. This follows from the mathematical and physical discontinuity that
occurs whenever either block transitions from rocking about one comer to rocking
about the other comer. In addition, the point about which the top block rocks will not,
i.' general, be stationary or fixed as it is for the bottom block; thus, there are Coriolis
terms introduced into the final equations of motion. Furthermore, the motion of each
block is highly dependent or coupled to the motion of the other block introducing
further complexity into a seemingly simple problem. The aggregate effect of these
system characteristic.- results in equations of motion that are highly nonlinear and
atypical.

To make this problem more tractable, at least from a mathematical viewpoint, one
must differentiate between the various regimes of motion that this system can possibly
attain. Each regime of motion can be defined by the particular equation of motion that
distinguishes one regime from another. It is somewhat obvious, especially considering
the insights gained by the single rocking block problem, that this system can rock in at
least four modes or phases, based on the geometry of the system and how the

displacement angle sign changes occur. There. are two other subphases that will be
consid red only as special cases of these four general phases. The four phases are
presented in Figure 4.

The two special cases occur when both blocks rock in tandem (rigid body mode)
aid when only the top block rocks, which is simply the problem of the single rocking
block discussed earlier. The only interest in the special case of both blocks rocking in
concert, which once again can be considered as the single rocking block problem, is
determining the conditions under which such a case can occur. That is not addressed
in this report. The special case of the top block rocking only is essentially the problem
of a single rocking block which has been studied extensively in the literature and will
be considered only minimally in this report.

i

Ca,.es 1 and 3 are similar except for the angular rotation direction and the same
can be said for cases 2 and 4 in terms of their similarity. What this implies is that cases
1 and 3 will have the same form of the equations of motion except for a sign difference
on the RHS of the equation, just like the single rocking block problem. Case 2 and 4
will exhibit the same characteristic, thus lending some efficiency to representing these
equations in matrix form. Applying a Newtonian formulation to these models, the
specific method used to derive the equations of motion is rather straightforward and is
presented next.

To formulate two independent equations of motion for each of the four cases
under c3nsideration in this report the dynamic moments were equated to the sum of
the moment of the forces. More specifically, it is possible to derive three equations of
motion for this model, bui only two equations are independent. There are also internal
forces in this system due to the block-to-block contact and spring force that complicate
the derivation. To simplify the derivation as much as possible, the first equation of
motion was derived for the top block at its point of rocking with respect to the inertial
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FIGURE 4 - Four Phases of Motion Under Considexation

reference frame E. This alleviated the aced io consider the blockzto-block contact
force since the moment of such a force about the point of application is always zero.
However, since the point of block B2 at which the moments are determined is not fixed
with respect to the inertial reference frame, this must be accounted for when
calculating the dynamic moment of this block and results in an expression that
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includes some Coriolis terms. The second equation of motion was derived for block
B1 about the point of rocking for the system which, is coincident with the point of
rocking for block B1. This alleviated the need to consider the system contact force
since the moment of such a force about the point of application is zero, as before.
However, the spring force and the contact force due to the top block must be
accounted for since, in general, the line of action of those forces will not pass through
the point of application and, hence, their moments will not be zero. This results in one
equation of motion per block for each of the four cases. Take case 1 for example (see
Figure 4). Equation 12a is the result of taking the moment of the forces acting on
block B1 about point G1 (see Figure 3), which Is fixed In the inertial reference frame E,
and equating these forces to the dynamic moment of block B1. The forces acting on
block B1 are: the weight of block BI in gravity field g, the spring force R,, (always in
tension), the contact force at point Qi due to block B2 , and the contact force of the
system at point G1. Since point Q2 of block B2 is coincident with point Q, of block B1
there Is no extension of spri.ng R1 so spring R1 does not contribute to the dynamics of
this particular case. Also, since the moments of the forces are being summed about
point G1 (which is fixed in the inertial reference frame e for this specific case) the
moment of the contact force at point G1 is zero. Thus, the moments of the three
remaining forces about point G, are equated to the dynamic moment of block B, about
point G1 to derive equation 12a. Since this is a 2DOF system, the second equation,
equation 12b, is derived by evaluating the moments of the forces acting on block B2
about Its point of rocking, point Q2, with respect to the inertial reference frame E, and
equating these moments with the dynamic moment of block B2. The forces acting on
block B2 are: the weight of block B2 in gravity field g,the spring force R2, and the
contact force at point Q2 due to block B1. Since point Q2 of block B2 is coincident
with point Q, of block B1, there is no extension of spring R1, so spring R1 does not
contribute to the dynamics of this specific case. The moment of the contact force at
point Q2 is zero since it is being summed at the same point also. This same procedure
is applied in the other three cases and the general equations are presented next.

CASE 1 --> O> 0. c

BIlCl + ml(n1 2 + h12) + m2[(bl'141 + (2aj9 i'i (13a)
"-m2f[h2(b-1")-2n2a1Jsin(a-O) - [n2(b-ll )+2h2ajlcos(aL-0) }' 2
-m2([n2(bj-1 1)+2h2aj]sin(c'O) + [h2(bj-ll).'2n2a1jcos(a-O) })
-[mjh g+2m2a gjsin8 - K2(b2+12)(1j+12 )sin(cc-O) - -[m n jg+m2g(b 1- j )JcosO

fBM2C2 + m2ln2
2 + h29211 (13b)

-m2fjh 2(bt-b )-2n 2aj1 sin(cL-O) - [n2(bj-lj) + 2h2a1Jcos(a-O) }) 2
+m2.1n2(b1-1j)+2h2allsin(a-O) + [h2(bj-l )-2n2ajlcox(a.-O) )}
= -m2gln 2coscQ - h2sinct] - K2(11+12 )(b2 +12)sin(cc-e)
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CASE 2 --> >0. >

?7BICJ + m1(n 2 +h]2) + m2 1(bi+b9ý+(2a,9J)8 (1 4a)
-m2(1h2(b,+12)+2(2b2-n2)aJsin(a-8)+[(2b2-n2X(b,+1 2)-2h2aJcos(ct-0))}t 2

+m~[(22-n)b+ 12)-2h2a,sin(at-e)-[h2(b + 12)+2(2b2-n2)a1Jcos(ct--O) } c
-K1(b2+11 )(i1 +12)sin(a-9)-(2m2ga l+mjh 1g)sin0 - -[m~b~g+M29(bJ + l9JcosG

('B2C2 + m2[(2b2-n2)n2 + 2]jt(14b)
-m2 (1h2(bl+12)+2(2b2-n2)aIsin(a-O)+[(2b2-n2 (bi+ 12)-2h2aj]COs((cX-8) Q
-m2(12b?-n2Xkb,+1 2)-2h 2a 1Jsin(ct-O)-[h2(b + 12)+2 (2b2-n2)a 1Jco~s(a-0) }
-m2g~b2cosa+h2sinaJ] - K1(b2 + Li)(L1 +12)sin(a-0)

CASE 3 -->E)< 0. rt < e

(IBiC,+mlft2b,-n1? +h12J+m21(bi-129+(2a1 91)0 (1 5a)
+m2zf'h 2(b, -12)-2 (2b2.n2)aJsin@(-O)+[(2b2-n2X(b,1 2)+2h2aiicos(cX--9) })
-m2f1(2b2-n2Xb,-12)+2h2a,Jsin(a-O)-[h2(b,-1 2)-2(2b2-n2)a,]COS(at-E8) dt
-K1(b2+ di)(I +)2)sVin(a-8)-[mlhlg+2m2a~g~sinO = [mjg(2b1 -nJ)+m2g(bJ -12)Jcos8

{B 2 C2+m21(2b2-n29 +h21 }bL (15b)
+m2ffh2(bj .12)-2(2b2-n2)alhsin(a-0)+[(2b2-n2X(b,-1 2)+.2h2aJcos(a-9) }02
+m2,fl(2b2-n2 Kbl-2)+2h2a,Juin((I-6)1h2(bi -12)-2 (2b2-n2)a 1Jcos(ct-0))}
-m2g[(2b2-n2)cost+/s2YinaJ - K1 (b2 +11X11 +12)sin(ct-@)

CASE 4 --> < 0 . c> A:

(iBiCI+ml[ (2b,_n,9 +h12)+m2f (b1 + b9+(2ai9 1)0 (16a)
+m2f[h2(bl~j +)+2nzailsin(at-O)1n 2(bi +11)-2h 2a1Jcos(a--9))d 2
+mzi'/n2(b, +l ) -2 h2a 1Jsin(at-O)+[h2(bI +I1) +2n2a1Jco3s(a-9) }4
-K2(b2+ 12)(11+ 12)sin(a-O)-[mjhlg+2m2aig~sinE) - [m1bjg+m2g(bJ +lJ)JcoSO

fJBC2 +m2(n2 + 2
2)c1 (1 6b)

+m2((h2(bj +lj)+2n2aljsin(Ct-O)-[ n2(b1 +lj )-2h2a1Jcos(ac-6)) 2
-m2 (fti2(bj +11)-2h2a1Jsin(ct-0)+[h2(bj +l,.)+2n2a,Jcos(cct-8)A
= m2gth2sinct-n2cosaj]-K2(b2+12)(11 +12)sin(cL-O)

where IBiCI and 'B2C2 are mass moments of Inertia of each block about their
respective centers of mass. Note that equation (a) refers to the equation of motion for
block B, and equation (b) refers to the equation of motion for block B2. Also note that
a single equation of motion for the whole system can be derived and would just consist
of the sum of equations (a) and (b), which Is to be expected.
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T7hese are the general form of the equations of motion and they are extremely
nonlinear so some simplifying assumptions are desired to make these equations
more tractable. As before, assume a homogeneous distribution of mass, small angular
displacements and that the connecting springs are located symmetrically about
thevertical axis of each block. The equations are presented next.

CASE I --> 0>0. a>6

('EW) +mj~b,2+a,2J+m2[tbj-119 +(2a,191) + M2[b2(b1-11)+2a2a11 bt (1 7a)
-K2(bh2+ 22X'l + 12)a - (mlalg+2m2a~g)-K2 (b2 + 2)(~11+12)] I

-[mjbjg+m2g(b- 1 )-j )

m2[b2 (b1 -11).i2a2a1)6 + (iB2.,C2+m2(b22+a2 J211ct (17b)

'fm 2a2g-K2(b2 +l2)(~1 +12)J O - K2(b2 +12X(11+1)( = -m2b2g

CASE 2 --> e >0. a <0

(fil CI +mj(bj2 +4+a2 )+M2 [tb 1 + 11 9 + (2a1 91)06 -m2[b2(b Y + 12)-2a2a1] b (1 8a)
-[m, alg+2rn2a~g-KJ (b2 +1j )(11 +1~2)] E)-K 1 (b2 +11)(11+ 12) CC = -[MI bjg +m2 (b1 + 12)J

-m2(b2(bj 1+2)-2a2a1J0 + (1B2C2 +m2(b 2
2+a2 

2)111 _ K1(b2+11Xl1+12)0 (I 8b)
-fM2a2g-K1 (b2+11X(11+12)J(t = m2b2g

CASE 3-.-> 0<~0.a<O~

(4nIc,+mftb1
2 +aj22 +m2 ((bj-l 9+(2a191) B+ m2(b2(bj -12)+2a2(j j)d5 (19a)

- I'mlajg+2m2ajg-Kj(b 2 +11)(11+12)J0 - Kj(b 2 +11XI,+1 2)ct mjbjg+M2g(bj-12)

m2[b2(b1 -12)+2a2aj1) + f72C+m2fb2
2 +a2

2J) d - K1(b2+lXII1 2)0 (1 9b)

- (m2a29-KJ(b2 +1j)(11+12 ))a = M2029

CASE 4--> 9<0. ci >0

('Bid +Mlfb1
2 +a21J+M2 [(b1 +l +('2a1 9jjO - in2!b2(b1 +1J )-2a2a1 P1 ~L (20a)

- (mlajg+2m2alg-K2(b2 +12 )(11 +12)18- K2(b2+12X11+12)ac =mjbjg+m2g(bj 1 +l)

- i 2 b2(b1+l1j)2a2a1)6 + 1I82C2+m2(b2
2+a22)JbL - K2(b2+12X(11+12) 8 (20b)

- m2a2g.K 2(b2+12)(1J+12)J at = -M2b29

To better visualize the Similarities between the equations, they are. presented next
In matrix form, which lends a better understanding of their symmetry. First, some
simple substitutions will be made for conciseness.
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Let IG - uci+m[b42+a12]

IQ= B2C2+m2lb2' +a2 I
A = [b2(b-1l)+2a2aJ] = [b2(b1-12)+2a2a],
B = [b2(b1+12)-2a 2a1J = (b2(b1 +11)-2a 2a1 ]

since 11 =12 because of symmetric spring placement.
KS1 = K1(b2+lXli +12)
KS2 = K2(b2 +12)(11 +12)

The first matrix equation corresponds to cases 1 and 3 where the equations are
the equations for each Individual block, iLe., equations (a) and (b). As mentioned

previously, the only difference between cases 1 and 3 is the sign change on the RHS.
This Is accounted for by using the sgn function, as shown below. The same
nomenclature applies to the second matrix equation, which represents cases 2 and 4.
The resulting equations are presented next.

CASE I --> 0 > 0. a >8 0 and CASE 3 -->..0>-Ž 0.aS 0

[7O+M21(bi- b)2+(2auj] Mi + [ K1+FS2 ' mlalg - 2M2ajg -KS7F0

[ 2 A LJ +nLKS2 Ks2 "m2a2jLJ

D m Ib1g + m2g(bj- tl)]sgn (0-_]

"m2b29g I rgn (9-M)

CASE2.--> 0<.0.a<9 and CASE4.--k><. I>f0

2((b1+1 2 9+(2a,9) - m2 +BEK51 - mlalg - 2m2alg KS
m2B -EKs) K s1-.m2a2g.j

m b g + m 2 g ( b j + 12 ) s g n ( 0 1MA S2bzglsgn (&-a)

In this form, the symmetry between the cases is readily apparent and facilitates the
understanding, determination and encoding of a solution method. ,This system of local
linearized equations Is globally nonlinear due to the discontinuities at transition.
However, valid and piecewise analytical solutions can be found in closed form
between transitions. The method to do so and the solutions are presented in section 3.
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3. ANALYTIC METHOD AND SOLUTIONS

As shown in the previous section, the nonlinear equations of motion (Eqs. 13
through 16) in their most general form, with the addition of an arbitrary forcing
function ftt), can be represented by

+ + [K I = [R S(1)f(t) (21)

where the matrices I, J, K, and R are coefficient matrices that are defined by the
physical parameters of the system of interest and the vectors L and S are discontinuous
functions of the original coordinates 111, i.e., i1I - 8 and r12 - a. The forcing
function,ftt), is a general deterministic or probabilistic one and can include horizontal
and vertical components of some ground excitation, or lateral excitation due to impact,
wind, or other effects. As mentioned previously, these equations are nonlinear with
specific nonlinear terms arising from Coriolis effects and geometrical constraints, that
contribute trigonometric terms to the vectors L and S. The equations are
nonautonomous under forced vibration. In addition, the matrices K and R undergo
characteristic changes based on the sign of the original coordinates. As a result, there
are N equations to describe N degrees of freedom with 2II possible solution sets
depending on the system parameters. Even after a linearization process by assuming
small angles of rotation, atypical equations remain. Specifically, the resulting stiffness
can be negative and, by virtue of the discontinuities, the systems of equations are only
piecewise linear.

This equation, in its present form, does not have any known analytic solution but
can be solved by a number of numerical techniques. Instead of solving the equations
numerically, the equations will be linearized and piecewise analytic solutions will then
be determined for the free vibration problem.

After linearization about 9 - 0 and a - 0, and setting the forcing function f(t)
equal to zero, the system of equations become

[IJ(fW + [Kl(Tq) =fWQ (22)

where the vector Q, independent of time, represents a geometrical constraint due to the
linearization process and not due to the general forcing function. Now, in general,
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these equations are Inertially and elastically coupled. Utilization of modal
mathematical techniques will allow uncoupling the I and K matrices thereby allowing
a solution set to be determined for this system.

Consider a linear transformation which maps the original coordinate system (i }
into a set of general coordinates (0) as shown below. Using

{r =[U] (qJ (23)

where matrix U is the transformation or modal matrix and the vector q represents the
new or generalized coordinates allows the transformation of equation 22 to

[ftlUli'}4 + [KIUJOqJ= fQo (24)

Now, pre-multiply through equation 24 by the transpose of matrix U which gives

[UlrJt][Ulf4) + IUlr[KJIUlq) = [UJT(Q) (25)

Now allowing some straightforward substitutions for conciseness, equation 25
becomes

[m]i4)l + [k](0J = (N (26)

where [ml = [UlTV1.[1U1
[k] = [U]) [IK[VU
(N = IUP fQ

The object of these mathematical manipulations is to uncouple the original system
of equations. This Is accomplished by what is more commonly known as
diagonalizing the original coefficient matrices I and K simultaneously. With a
judicious selection of the transformation matrix U, this is always possible if the
following conditions ate satisfied: one, the matrix I is positive definite and invertible,
and two, the I and K matrices are real and symmetric. If these conditions are satisfied,
then there exists an orthogonal matrix U that can be used to uncouple or diagonalize
the system. This Is true for the system of interest of this report but the proof Is beyond
the scope of this paper [17]. Also, note that it is sometimes possible to diagonalize
systems where the coefficient matrices are not real and symmetric; i.e., there may
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exist:. ýIransformation matrix U tJat will diagonalize the system but there is not
n 4 onel In this case, on-.. -ould use the inverse of the transformation matrix

U instea- uf the transpose.

The next question one should ask is how is the transformation matrix U
determined? The transformation matrix U is just the eigenvectors of the system of
interest. Thus, one would pre-multiply through equation 22 by the inverse of matrix I
(which is where the requiremnent for matrix I being invertible comes from) and form a
new coefficient matrix for the vector 71 represented by a new matrix, A.

f•j 4. [A1(Tll = (0) (27)

where [A] =f[] [K]

So the elgenvectors of the matrix A form the transformation or modal matrix U that
were used in equation 23 to map the original coordinates, Ti, into the new or
generalized coordinates, q.

Once this mathematical technique is used, the resulting system of equations are
uncoupled and lend themselves to solution by any of the various common means of
solving ordinary differential equations such as Laplace or Fourier methods, Applying
this modal method to equation 22 results in equations of the form of equation 26 with
the explicit equations being:

One solution set to these equations is for kI > 0 and k2 > 0:

qg~t) = Ell coswlt + E12 StnW~t 4:!1(29a)

q2(t) = E2 1 cosw2 t + E22 sinw2t 2T . (29b)
T2

or, If k, < 0 and k2 < 0 then:

Zl
qI(t) = E11 coshwft + E 12 sinhwlt T1 (30a)
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Z2
q2(t) = E2 1 e'oshw2t + E22 slnhw2t T k2 (30b)

where the trigonometric or hyperbolic functions comprise the homogeneous solution
while the last terms are the particular solution to equation 28. Both solution sets need
to be considered since the sign of the ki term in each equation drives which equation is
used. For example, if kI is negative, then the correct solution for qj(t) would be
equation 30a. It is entirely possible that for the same system, k2 is positive and thus
the correct solution for q2(t) would be equation 29b. Therefore, these two independent
solutions would comprise the solttion set to equation 28, the solution with respect to
the general or transformed coordinates. Also, since the k1 terms in equation 28 are
functions of the original K matrix via the modal mapping process, and since the
original K matrix is case dependent, i.e., the sign and magnitude of the Kjj terms can
vary among the four cases or regimes of motion, the character of the solution set for
equation 28 can vary whenever the cases change.

Now the k, terms govern whether the form of the solution is trigonometric or
hyperbolic, but these stiffness parameters are valid only in the generalized coordinate
system. To understand physically when the solutions change character, the value of
the ki terms at the critical point (k, - 0) must be understood within the context of the
original coordinate system, As given by equation 26

[k] = [TUTIKII[U (31)

or explicitly

k,1 = u 2 KI +u1 1 u2 1 (K, 2 +K2 1  + 1 2 2  (32a)

k2 = u2 2Kl 1+u1 2 u22 (K 2-÷K2 .) 2

12 2)+ u22K2 2  (32b)

Assuming that the two original springs are placed symmetrically, have the same
stiffness and substituting in the explicit expressions for Kgi terms from page 18, then at
k, = 0 and k2 = 0 expressions can be derived to determine the values at which the
original spring stiffness causes a change in the character of the solution.
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+ 2 ( U 2 1  ) '

(b2 + 1) (11 + 12) 1-2 (U21l)+ (,u21;

A+B 2+ (2 2]

K2 -
2 (33b)

(b2 +12 ) (11l+12)[12- J+ _U2u 12 U1

where A = mlaig and B = m 2alg

Thus, the valies of the original stiffness terms at which the solution changes character
are functions of the elgenvectors of the system which change as the original stiffness
terms change in value. This means that for a specific stiffness, there is a corresponding
critical value at which the solution changes character. If the original stiffness changes,
then the critical value will change also! The specifics of this as it relates to this
problem will be discussed in section 4.

The w, and w2 terms in equations 29 and 30 are just the eigenvalues of the
system represented by equation 28 and are determined by equations 34a and 34b.

W1 =(34a)

w2 = ' 2  (34b)

Since the mi terms represent a physical quantity, the mass, they are always positive;
therefore, the sign of the kL terms determines whether the solution set to equation 28,
as outlined in equations 29 or 30, contain trigonometric or hyperbolic functions.
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The Eli coefficients in equations 29 and 30 are determined from the transformed
initial conditions, i.e., the initial velocities and displacements of each block
respectively. Since an analytic solution of equation 22 is known only in the
generalized coordinate system or space, it is necessary to map the original initial
conditions to this space also. This is accomplished by the use of equations 35a and
35b.

fq(O)) - ImJIUIJrj(O)..;L (35a)

f4 (O)j 11[,][UIrllJ{•m(0o) (35b)

where [m] = IUIT[t][U] from equation 26, matrix U is the modal matrix, matrix I is
the original inertia matrix for the tý vector, and the l1 and 1 vectors are the initial
coordinates for the displacements and velocities, respectively. In explicit form,,
equations 35a and 35b are:

[q (0)1 1  1[ U211 12 (36a)
:2 (O)J 21 12 2 (0)(

[4i~ (01=[iO[~i1211 ill'11(0)

42,(0)i L0 2 ll2U22J' 21 1 2 jl2 A1 (0)j (36b)

Once the generalized initial conditions are determined via equations 36a and 36b, It is
relatively simple to rearrange equations 23 or 24 to solve for the Eli coefficients. The
rearranged equations 23or 24 now become at t = 0,

z1
Ell = q1(O) +•1 (37a)

z2

E21 = q2(0) Z2 (37b)

and coefficients E12 and E22 are found by taking the derivative of equations 23 or 24
and then rearranging the terms to get,
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2 = (37c)
W1

E22 = (37d)V12

Thus, equations 29 and 30 can now be evaluated to provide the solution to the system
equation 28.

These analytic solutions, q1(t) and q2(t), are valid only in the generalized
coordinate system since they were only possible to obtain In that space and must be
converted back to the original coordinate system to produce the proper displacements,
velocities, and more importantly, the physical understanding of the dynamics of the
problem. Once the generalized solutions arc obtained as a function of time they are
transformed back to the original coordinate system by equations 38a and 38b.

0(t) = ullq1(t) + u1 2q2(t) (38n)

a(t) = u21ql(t) + U22 q2(t) (38b)

where, as before, the u18 coefficients are merely the elements of the modal matrix U,

i.e., [U) = [U21 u121
LU21 "U22]

Computationally, this process is (tone at each time step to produce the correct
motion and time history of the rocking blocks. The complete time history of the
rocking blocks then becomes the aggregate of the motion as evaluated at each discrete
time step. However, one must account for the discontinuities that occur at each
impact, which Is representedn mathematically as the transition from one set of
equations of motion with their corresponding analytic solutions to the correct or new
equations of motion with their corresponding solutions, by evaluating the local time
history and generating new Initial conditions for the next regime of motion. As with
the SDOF system, the assumption was made that by using conservation of moment of
momentum, a relationship could be derived relating the new initial conditions to the
previous Initial conditions to account for the discontinuity at impact, This procedure,
as discussed in section 2 of this report, allows the derivation of equations that account

25



for the energy dissipated during the transition from one regime of motion to the next.
However, instead of one equation, as was the case for the SDOF system, this method
provides two equations, as is to be cxpected for a two DOF system. As before, these
equations are a function of the geometry of the system and in addition, they are
functions of the mass and impact velocities. In effect, these equations bridge the
discontinuities between the four regimes of motion and allow the calculation of the
new angular velocities required as two of the four initial conditions for the next regime
of motion.

One important consideration for a 2DOF system is how to apply conservation of
angular momentum to this system. As mentioned before, two independent transition
equations are required to solve this problem in closed form, but there are three possible
applications of this principle: conservation of system angular momentum or
conservation of the angular momentum of each block. For this particular system,
conservation of angular momentum holds true for the system and the top block only!
The angular momentum of the bottom block Is not conserved. The proof resides in the
appendix, The transition equations, which are rather complex and involved,
corresponding to this specific model of a two DOF system are presented below and are
mathematically equivalent to the equations first derived by Psycharis [13].

Eor 8 - transition from case 1 to case 4 or case 3 to case 2,

6f = CA (39a)

= - +dI (39b)

J2J3 -J1J4 J2  L3
where != J3J3-J 5  =1 Ji

and Jl - 112C2 + m2 (" 2• +b2
2)

J2 - m2 1 b2 (bl-11) + (2 a. h2)J

13 - -m2 [b2 (bl+l2) - (2 a, h2)J

J4 - 'BICd + ml (h1
2 b1

2) + m2 [(2 aj? - (br1. 2)(b1 +12))

J5 - 1B•iC + ml (a,2 4b 1
2) + m2 1(2 a,)9 + (b,+12 hJ
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For 0 - transition from case 4 to case 1 or case 2 to ease 3, which is physically the
reverse of the previous transition, the form of the transition equations are the same, but
"Jie Ji expressions are slightly different as shown below.

J i + MB2C2 +i2(a2+b22 ) (40a)

J2 - -M2 I b2 (b1 +12)"- (2 a1 h2)] (40b)

j3 - m2 [b2 (bl-12) + (2 a, h2)1 (40c)

J4 - 'BIdC + m1 (hi2 + b1
2 ) + m2 1(2 aj) - (bl-12)(bl+12)] (40d)

j5 - BJeCI + ml (a1
2 + b1

2) + m2 1(2 a1) + (b,-1 2 1] (40e)

For a - transition from case 1 to 2 or case 3 to 4

Of = (c 2 + Xd 2 ) 6 1  (41a)

cf= (c3 + Xda3) dki (41b)

2J-JlJ7 d J2J3 -j1J6 'iwhere c2 =J2J2 - JIJs d 2 =J 2J 2 -JlJ 5  X i

J4J5 -J2d7 J3J5 -J2J6
and C3 = -3JIJ5 -J2J2 JlJ5 -j2 2

and J I " 82C2 + in2 (a2
2 +b2

2 )

j2 " -in2 b2 (b,+I,) - (2 a, h2)

J3 - IB2C2 + m2 (a2
2 + b22) - 2 m2 b22

j4 - "M2 Pb2 (bl"12) - (2 a1 h2)]

j5 - IeBI1 + ml (a,2 + b1
2) + m2 [(2 a,)2 + (b,+12 91

j6 _" I 2 12 b22 + 2 aIo2 + b2 (b1-12)]

h " IB-Ci + ml (a1
2 + b12) + m2 [(b1-12) + (2 aj)2 + 2 b2(bl-12)]
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For a - transition from case 2 to case I or case 4 to case 3 , which is physically the
reverse of the previous transition, the form of the transition equations are the same, but
theji expressions are slightly different as shown below in equations 42.

1B2C2 + m2 (a2
2 +b2

2 ) (42a)

J2 - m2 1b 2 (b1 -12) + (2 a h2) (42b)

h3 - '82C2 + m2 (a2
2+b22) - 2 bm2  (42c)

j4 - m2 [b2 (b, +12) + (2 a, h2 )] (42d)

j5 - 'IBci + ml (al? + b12 ) + m2 [(2 al9 + (br-12 91 (42e)

j6 _ r2 [2 b2
2 + 2 aja2 - b2 (bj+ 12 ) (42f)

J7 - IBICI + ml (a1
2 + b12 ) + m2 [(b1+12 9 + (2 al) - 2 b2 (bl+12 )J (42g)

It is also possible to derive transition equations using conservation of energy
principles, but there are drawbacks to using such a method. Though the derivation of
the expressions relating the pre-impact angular velocities to the post-impact angular
velocities is rather straightforward and somewhat less tedious, the final expressions are
more complex and less tractable. The final expressions are nonlinear because of the
velocity squared terms, the velocity coupled terms, and the trigonometric functions of
the displacement angles. Ignoring these difficulties still requires one to arbitrarily
select a "coefficient of restitution" term to account for the energy loss due to impact.
If the selected value for this term Is too large In magnitude, then physically this is
equivalent to adding energy to the system which then undergoes larger and larger
oscillations until the system topples. Using the conservation of angular momentum
method prevents this by determining the upper theoretical value for the coefficient of
restitution term from geometrical considerations as stated before. Note that it is still
possible for the system under consideration to topple under the appropriate conditions;
but if that phenomenon occurs, then it is a function of the initial conditions and the
geometry of the problem, not due to some lack of accountability of energy dissipation
during transition.

Another significant consideration with transition involving the computational
aspect Is how to determine which state the system lies in when one of the two
coordinates is exactly at the transition point, i.e., 0 - 0 or a - 0. Mathematically, the
equations of motion are undefined at these points, which is why the transition
equations are needed; but it is still necessary to be able to determine which regime of
motion the system will enter after going through transition. The reason for this is that It
is necessary to calculate the correct post-impact initial conditions, i.e., the correct
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values of 0, a, 6 and 6. Also, it is important to realize that though this report
considers the four main regimes of motion, as mentioned previously, it is possible for
the system to rock as a SDOF system (both blocks rock in tandem), or it is possible
that only the top block will rock. The reasons for not discussing these cases in depth
here has been explained previously but the possibility of these cases occurring must
still be accounted for computationally to obtain the correct system response.

After each time step calculation, the case or regime of motion was determined by
the values associated with the 0 and CL parameters. Transition occurs when the
current case differs from the previous case. At this point, since the pre-impact and
post-impact cases are known, the transition equations are used to recalculate the
current time step's angular velocities for the two new Initial conditions for the post-
impact case, The displacement angle of the block undergoing transition was set equal
to its transition point, i.e., E = 0 for a bottom block impact or a = 0 for a top block
impact. The other displacement angle retabs its previous value; thus, there are now
four new initial conditions for the post-impact case. These new initial conditions are
mapped to a set of generalized initial conditions and the next local solution for this
time step is determined. When one or both blocks are at a transition point, then the
angular velocities are examined to determine the post-impact case or regime. Note
that when the post-impact case Is determined by the values of the angular velocities, it
is the angular velocities as determined from the transition equations that are used.

It is possible that the velocities can change sign and by orders of magnitude
during tnisition. The change of sign requires that for computational reasons one
must consider the relative velocities of the blocks to determine whether they will rock
in tandem or separate. In other words, there are some velocities as calculated by the
transition equations that are physically impossible to attain in order to maintain the
physical integrity of the blocks. The process is complex and as an aid to
understanding the decision algorithm Is provided in Figures 5 through 7. For
completeness, cases 5, 6 and 7 were added to the four main cases, as shown previously
in Figure 4. Case 5 is the case where both blocks are rocking together, or
mathematicedly, where a = 0 always. Once this condition occurs, the system will
remain in this state at least until the bottom block impacts. Then it is possible for the
other cases to occur. Case 6 corresponds to the situation where the bottom block Is
motionless and the top block is rocking. This Is analogous to the
SDOF system or the single rocking block problem. Case 7 is simply the case where all
system motion has ceased and is included as a computational aid.

Thus, it is possible to calculate and model the motion of a 2DOF system
representing a turreted vehicle; however, the primary motivation of this method is the
calculation and prediction of the acceleration levels, as a function of the gross motion
of the vehicle, at any point within the structure. The solution of equations 17 through
20 In te'cms of 0 and Ca allows the calculation of acceleration levels as a function of
these two parameters and the geometry of the system under scrutiny. The method and
equations are presented next.
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Since it is necessary to derive the acceleration equations to determine the proper
expression for the equations of motion, these equations are just presented below. See
appendix A, a sample calculation, for more detail.

CASE 1 --2•0>0. a>O

O(Pl/e) = (Xlg-y26')j- (YlO+X26')i (43a)

g(p 2 /E) =((bI )6-2al62)J ((bl li)02 + '

+ (x 2a - Y2 d2) y - (x2 d2 + y2b) H (43b)

CASE 2 -- > 0 •,0. a <0

g(pl/e) = (Xl1 -yl62)j- (yl6+x 1 62)L (44a)

9(P 2/e) =((bl+12)0 2a102)J--((bl+12) +2aO)i

+ ((2b 2 -x 2 ) -y 2 2) y+((2b2 -x 2 )d2 +y 2 ' )y (44b)

CASE 3 --> 0 < O <0

.2 .2g (pl/e) - ( (2bi -Xl) g _yl0 6),+ ( (2bl-Xl) 62+Y10)L (45a)

g(p2/F-) = ((b1 .. 2)0 2a1 2 )J ((b1 12)6 2+ 2a10)L

+ ((2b 2 -x 2 )'h-y 2 26 )y+ ((2b 2 -x 2)d,2 +y 24,)M (45b)

CASE 4 -- < 0. a >

(Pl/) - ((2b,-X )•-yl02 )J+((2bl-x,) 2 +Y10)L (46a)

g(p2/e) = ((i+l•2l J (1+l)2+a0J

+ (x 2A-y 2(2 )v- (x2 d2 +y 2d)M (46b)
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where points p, and P2 are the arbitrary points in bodies BI and B2 where the
acceleration levels need to be determined. Parameters x1, y, and x2, Y2 are the
coordinates of points P, and P2 with respect to the inertial reference frame c. The
vectors/L, j J and y are unit vectors with the following relationships to the inertial
reference fiame, e (X, Y).

CASE I -->0> 0. a>

L= cosO + sinOy j = cosOy- sinOX

#= cosc + sinay .v = cosc a'- sinaLX

CAS 2 -->0>0. < 0

L cos0X + sinO j= cos0Y - sinOX

H cos - sinx r = coscay+ sinaX

CASE 3--> 0 < 0. a5 <a

L = cosOX'- sinOe j cosO - sinnOX

# cosct- sincay = coscay'+ sinc

CASE 4-> 0 < 0. a 0fi

i = cos6X- sin0er j = cosOy - sinOeT

= cosUX+ sinay y = coscay"- sinCa

Modal analysis enables the decoupling of the system equations and the
determination of analytic solutions as functions of the system parameters in the form
of coefficient matrices. This allows the conduct of parameter studies by adjusting the
coefficient matrices, arid, in the case of the stiffness matrix, possibly changing the
form of the solution to understand the effect of varying spring stiffness. The
implications and results are presented in the next section.

31



0<0

< a*

CASE 4 CASE 3

CASE 5 CASE 3 CASE 4 CASE 5 CASE 3

S0= 0

CA SE5 CAL E 4

*> d
CASE 4 CASES CA E3

FIGURE 5 - Decision Tree for 0 < 0
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FIGURE 6 - Decision Tree for 0 =0
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FIGURE 7 - Decision Tree for 0 > 0
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4. RESULTS

The analytical solutions presented in section 3 were incorporated within two
computer programs (FORTRAN 77) so that parametric studies of the effect of various
values of the inertia and stiffness coefficient matrices could be determined. The first
program simulated the single rocking block (SDOF) system while the second program
simulated the more complex stacked rocking block (2DOF) system. The SDOF code
was run on a SUN 3/50 workstation at 32-bit precision and the 2DOF code was run on
a CRAY XMP/416 supercomputer at 64-bit single precision with a time step of 0.001
sec. The codes were also run with time steps of 0.0001 sec with no significant
differences in the values obtained. All the results presented here were generated using
time steps of 0.001 sec.

For the SDOF system, the block was considered to be homogeneous with a
square base, bl=4ft and half-height of aj.=4ft. Thus, this block was cubic and had
dimensions of 8&xx8ft. A density of 145 lbs/fP was assumed, representing concrete.
The block was displaced 0.40 radians in the positive direction with no initial angular
velocity and allowed to rotate in free vibration. Six values of the K1 term were
compared for their effect on the system response. The results are presented in Figure
8.

The trend shown in Figure 8 is rather evident; as the K, term increases in
magnitude, i.e., the system becomes "stiffer," the block impacts sooner (at t = 0,15 sec
for K = 5,000,000 lbs/ft versus t = 0.63 sec for K = 0) and the succeeding amplitudes
of each peak are greater for larger values of K. This is to be expected since this
reprewnts typical behavior for SDOF systems modeled as simple harmonic oscillators.
Holding the initial displacement constant while increasing the stiffness of the spring
constant is equivalent to adding energy to the system in the form of potential energy of
the spring. Thus, the stiffer systems have more energy and it is expected that they
would impact sooner and harder than the more flexible systems. This is also why the
post-impact response is more energetic for the stiffer systems since the energy
dissipated during transition percentage-wise Is the same regardless of the stiffness.
Note that this system is not a viscously damped harmonic oscillator, though the
governing equations of both are the same, since the physical model of the single block
includes energy dissipation within the code to account for the change in the pole of
rotation during transition. An undamped harmonic oscillator would vibrate
indefinitely with no energy loss while this system eventually damps out due to the
instantaneous angular velocity reduction at impact from the transition equation, which
is a function of the system geometry. Note that for this specific example from
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FIGURE 8 -Free Vibration of Single Block as a Function of K

equation 11, C = 0.25 so that the reduction In velocity atteach Impact is 7S%, whIle
using equation 11, the energy loss Is roughly 94% 1 It Is Important to note that the
spring, which can be thought of as an energy storage element which neither creates nor
destroys energy, has no effect on the transition of the system in terms of energy. The
most significant aspect of this example is that even though the value of K Increases by
orders of magnitude, the system response varies very slowly until the difference in
magnitude is around an order of 5. Thus, It appears that the system response, though a

__. function of' K, is a relatively weak function.

S~For the parameters chosen for this problem, and using equations 4 and 5, the
values at which the soution changes character was determfinad and i,, presented in
Table I1. Note that K., = 149,408,0 from equation "7. Thius, it is evident that the
character of the solutlOv. changes when the stiffness of the spring~was sý.t at 150,000
lbs!f"; but It Is Interesting to note in Figure 8 that the response of the blcxwk did not
change significantly. It lss niewh~tt surprising from a mathematic•ll viewpofint that
when the char, xwter of the solution changes, the system response is relat ively benign.
This Is more evidence that the system response is a weak function of the stiffness.
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TABLE 1 - SDOF Character of Solution at Various Stiffness
K (lbs/ft) A (1/sec)

0 -12.0750
50,000 -8.0341

150,000 0.0478
300,000 12.1707

1,000,000 68.7440
5,000,000 392.0198

For the 2DOF system, both blocks were considered to be homogeneous, stacked
symmetrically, and to have square bases such that b-=4ft and b2=2ft. The height of
the bottom block was 2a 2=8fr and the top block was 2a2=4ft, so both blocks were
cubic in nature with the dimensions of the bottom block being 8x&x8ft while the top
block was 4x4x4ft.

The first parametric study was to consider how the system response varied with
the ratio of the densities of the blocks. The density of the top block was kept constant
at P2 = 145 lbs/ft• as the density of the bottom block, pj, varied In multiples of the top
block's density represented as the ratio P = pi/P2. The bottom block was given an
initial displacement of 00 - 0.4 rads with no initial angular velocity, while the top
block was Initially displaced at cto - 0.5 rads with no ilitial velocity. The value
associated with the parameter K was kept constant at zero, The response of the top
block is presented in Figure 9 and the response of the bottom block is presented in
Figure 10.

Considering the motion history of the top block first, it is evident that as the mass
of the bottom block increases relative to the top block, i.e., an Increasing P ratio, that
the top block's motion becomes less muted or gradual until impact of the bottom block
at which time the additional rmass associated with the top block relative to the bottom
block, i.e., a smaller P ratio, allows for a greater response of the top block In terms of
amplitude and duration after impact. Since conservation of angular momentum is the
principle that bridges the two regimes of motion, this type of response is expected and
reasonable, Also, note that a comparison of Figures 9 and 10 show that the sudden
change in the slope of the P curves In Figure 9 correspxnd to impacts by the bottom
block. This is explained by the Instantaneous velocity reductions that occur for the top
block during Impact of the bottom block. There are certain conditions that cause the
top block to increase, its displacement beyond the initial displacement due to the
interaction of the bottom block as shown in Figure 9. As the higher P ratio shows, this
phenomenon occurs when the mass of the top block is relatively less than the bottom
block's mass. It is even possible under some conditions for the top block to topple due
to its coupling with the bottom block, whereas this behavior is not seen with the SDOF
system. This will be discussed after considering the motion of the bottom block.
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MOTION OF TOP BLOCK
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F•(URE 9 - Vibration of Top Block as a Function of the Ratio P

Considering the motion of the bottom block, as seen in Figure 10, it is not
surprising to see that as the P ratio decreases the bottom block's motion becomes more
gradual and the first Impact tlme lengthens out. This is somewhat Intuitive In the sense
that it would seem reasonable to expect that motion of the bottom block would
quicken as the mass of the bottom block Increases. Also, as the mass of the bottom
block Increases relative to the top block, i.e., an Increasing P ratio, the curves in Figure,
10 approach an asymptote which appears to coincide with the K=O curve in Figure 8.
This is reasonable in that the effect of the mass of the top block on the system response
decreases with an increasing P ratio. Figure 10 also shows that once the bottom block
impacts, the system motion damps out very quickly. This phenomenon is thought to
be caused by the coupling inherent in these type of systems.

The trend in Figure 9 shows that increasing the P ratio causes the displacement
of the top block to Initially increase rather than decrease. Physically, as the mass of
the bottom block increases, the restoring moment due to gravity acting on the bottom
block increases, causing the bottom block to rotate down faster. This displaces the
point of rocking associated with the top block causing a destabilizing moment on the
top block; hence, its displacement angle Increases. Figure 9 shows that this
displacement increase due to the mass ratio does not grow indefinitely but approaches

:38



MOTION OF BOTTOM BLOCK
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A1GURE 10 - Vibration of Bottom Block as a Function of the Ratio P

a terminal value that is believed, to be a function of the physical parameters of the,
system. Thus, If a stability criterion for the top block was known, then a comparison
with this terminal value could address the toppling of the top block.

Since the physical criteria for toppling or system instability for MDOF systems
are not generally well defined, no general conclusions can be drawn about the stability
of MDOF systems at this time. It is possible to generate mathematical constraints or
criteria for stability for the linear regimes of motion In terms of the physical
parameters of the problem, but this does not address the issue of system stability
because at transition the dynamics of the problem change instantaneously. This
discontinuous change has the potential to convert a mathematically unbounded
solution to a stable one or a mathematically bounded solution to an unstable solution.
One straightforward method to solve this dilemma Is to analyze the response of a
specific system and see if the time history grows unbounded.

A cursory exanination of the dynamic stability of this particular model in terms
of how varying the stiffness affects the system response was performed and the results
are presented in Figure 11. For this example, two stiffness constants were chosen, k=O
lbs/ft and k=50,O00 lbsl/ft. The densities of both blocks were set at 145 lbs/ft and the
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bottom block had dimensions of 8WxWx~fr? while the top block was cubic, also with
dimensions of 4x4x4 0t3. The initial displacements of both blocks were zero with the
initial velocities of both blocks as variables to generate the stability plot.

The most important consideration in generating this plot was what stability
criteria to use. For the case where the stiffness was zero, i.e., no spring, the top block
was considered to topple after passing 45 degrees in displacement which is the static
equilibrium point for a cubic, homogeneous block. It is harder to justify toppling of
the bottom block, at the same point for the following reason. If the point of rotation of
the top block resting on the bottom block is in the same direction of displacement of
the bottom block then the additional weight of the top block would impart an
additional destabilizing moment on the bottom block causing toppling to occur sooner
tan 45 degrees. Conversely, if the point of rotation of the top block on the bottom
block is on the furthest edge of the bottom block, in terms of the bottom block's point
of rotation, then the weight of the top block would provide an additional stabilizing
moment so that toppling of the bottom block would occur after 45 degrees. For
simplicity, the critical stability point was chosen to be 45 degrees for both blocks since
the primary interest was to account for the effect of the system stiffness on system
stability, and not to determine the exact stability state of the system.

STABILITY REGIME OF BLOCKS
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FIGURE 11 - Stability as a Function of Stiffness K
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The stability criteria for the case where the system stiffness is not zero is more
complex. Ta general, the stabilizing and destabilizing moments are functions of both
the spring stiffness and the displacement angles, so a simple number criterion could
not be dete'mined. The system was started and the response of both blocks were
examined after the displacement exceeded 45 degrees. If the solution continued to
grow unbounded, then the system was considered unstable with those initial
conditions. If the solution became bounded within 5% of 45 degrees or transitioned
which resulted in a velocity reduction or reversal, then the system was considered
stable with those initial conditions.

"Some general observations can be drawn from Figure 11. For this 2DOF system,
stability Is a function of the stiffness and, as the stiffnesc increases, the region of stable
behavior grows larger. The region of stability for both stiffness curves is centered on
the origin of the coordinate system which is to be expected, and the shapes of the
curves, though not symmetric, have a rough order to them,

The second parametric study of the 2DOF iystem was to examine what affect
variation of the spring stiffness had on the system response. The physical dimensions
of the blocks remained the same and the density of both blocks was set at 145 lbs/ftý.
The bottom block was given an initial positive tilt of 00 - 0.4 radians and tlhe top
block one of ao - 0.5 rmLians. Six values of K were used ranging from zero to
5,000,000 lbs/ft and the blocks were allowed to oscillate free'y. The s¢esults are
presented in Figures 12 and Figure 13, respectively.

Figure 12 illustrates the motion of the top block as a function of six different
spring stiffnesses. The general trend is somewhat similar to the SDOF case as shown
in Figure 8; that is, as the stiffness of the system increases, the curves shift down and
14t, leading to quicker impact times. For high values of K, the curves appear to
converge to some asymptote and the same first impact time. It is believed that this
asymptote is strictly a function of the physical parameters of the system and not the
stiffness terms. Also, note that the initial slope of the curves tends to be steeper for the
stiffer systems and then level off to the slope of the asymptote. To really understand
this system response, Figure 13 must be examined in context with Figure 12.

Figure 13 illustrates that there appears to be little variation in the response of the
bottom block with respect to the different K values. As with the SDOF system, it
appears that the response of the bottom block Is a weak function of the K parameter
and primarily a function of the physical properties and initial conditions of the system.
A comparison of Figure 13 with the K = 0 curve in Figure 8 highlights that the top
block has some effect on the motion of the bottom block and for these specific
conditions, the effect is relatively small. One must be careful in drawing general
conclusions concerning this point because the relative mass ratios of the blocks will
confound the analysis of the effect to some degree. When the mass of the top block is
roughly equal to or less than the mass of the bottom block, then the first impact of the
bottom block is Lelayed with respect to the SDOF system. Also, the addition of the
top block with its inherent coupling effects introduces a synergism to the system such
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that after the first impact, the system response really dies down due to the energy
dissipation associated with the transition equations. This is even seen for 2DOF
systems that are so stiff that they can be modeled as one rigid body due to a high
spring stiffness, i.e., large values of K.

TIME HISTORY O5 TOP BLOCK

0 1. S0 S

0 0. 0,
.0-

K-- 06,000 lbs/ft -

0 -.- K.w,,0,000 ,b./ft/
-0• .,. , "Ž50.000 's/rt "---. ,

S... Kv- O(,O'O0 Ibs/lt

--- i,,,O00,OOQ I~s/ft

K-5,000,000 I/Ift

0.0 0... 2 03 0 01- 0 7 0 .O's 0 1.. 1 1

Time 440)

FIGURE 12 - Vibration of Top Block as a Function of Stiffness K

With this understanding, it can be seen in Figure 12 and 13 that as the spring
stiffness increases, the system becomes more rigid in nature and begins to respond
similarly to SDOF systems. That is the significance of the asymptote discussed earlier
in this section. It represents the physical condition where both blocks, though still
separated relative to each other, are rocking in concert as if they were a single block. It
is evident from Figure 12 that the spring acts to pull the blocks closer to one another,
which explains the steepness of the initial slopes for the stiffer systems. The blocks
are just approaching each other at a faster rate and it is interesting to note that the
asymptotic curve starts at about 0.40 radians or the initial displacqment for the bottom
block since, in this case, the bottom block is eight times as massive as the top block.
Also, the stiffer the system the closer the impact times of each block are to each other.
For this example the impact time for both blocks for the stiffest system Is
approximately 0.74 to 0.75 sec.
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FIGURE 13 -Vibration of Bottom Block as a Function of Stiffness K

For the parameters used to produce Figures 12 and 13, the critical spring stiffness
required to cause a change in the character of the solution. for each original spring
stiffness was determined using equation 32 and is presented in Table 2.

TABLE 2 - 2DOF Character of Solution at Various Stiffness

"-,(lbs/ft - K . - - , &ooooo ,( /f ,
-5,000,000 91,239,579,585 Z8,398
-1,000,000 3,841,418,541 70,802

-500,000 1,001,312,068 68,374
-250,000 271,482,930 69,355

-50,000 18,927,269 68,251
0 1,803,504 68,014

50,000 3,084,635 68,857
250,000 192,272,695 68,445
500,000 842,891,734 68,419

1,000,000 3,524,577,939 68,407
5,000,0(X) 91,239,579,585 68,397
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Table 2 shows that for this specific problem, irrespective of the original stiffness
chosen, the critical stiffness K, will always be positive and greater than the original
stiffness; hence, the generalized solution q, will always consist of trigonometric terms
only and never change character. However, it is also interesting that the critical
stiffness parameter, K2, appears to be independent of the original stiffness but always
positive. The generalized solution, q2, will change character, from trigonometric
terms to hyperbolic terms, for K exceeding approximately 69,000 lbs/ft. Thus the
character of the general solution as presented In equations 29 and 30, will consist of
trigonometric functions below an original system stiffneos of 69,000 lbs/ft and consist
of a combination of trigonometric and hyperbolic functions above that value for this
particular system.

The final topic of this report concerns the constants used in the transition
equations 39 mid 41 that are strictly functions of the physical parameters of the system
modoled. Table 3 presents some values for these constants for various geometries of
stacked blocks. Column 2 represents the values for the example problem used here.

Table 3 - C and D Values as a Function of Block Geometry

4x6x6 4x4x4 8x8x8 12x4x4
B D nsion L'tx3xD3 4x6x6 8x8x8 8x8x8 12x4x4 *

cl 0.31 0.28 0.75 0.63
d, 0.65 1.77 0.44 0.63
c2 0.60 0.97 0,81 0.73
d2 0.40 0.03 0.19 0.27
C3 0.81 0.76 0.37 0.54
d 0.19 0.24 0.63 0.46

1.28 1.02 1.11 1.18
d 1 -1.17 -1.54 -0.29 -0.52

0.72 0.99 0.89 0.82
d,2  0.28 0.01 0.11 0.18
C, 1,17 0.77 0.29 0.52

d -0.17 0.23 0.71 0.48

Note that the top dimension represents the top block and the bottom dimension the
bottom block. Also, the primed constants are the values for the reversed transitions as
outlined on pages 26 through 28.

The trend for MDOF systems in general, and for this 2DOF system specifically,
is the more slender the system is, the smaller the energy loss during transition.
Though the trend is somewhat confounded due to the coupling between the blocks, it
is readily evident In constant c1 which governs the theta transition. Constant d1, which
Influences the top block transition, shows that the most significant factor affecting
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energy loss is the relative block sizes, more so than the geometry of the individual
blocks. Constants c2, c3 , d2 and d3 govern the top block transition and no specific
conclusions can be drawn from this relatively more complex transition.

To summarize, although 2DOF stacked block systems in general behave in
nonintujitive ways as Psy,.haris [13J showed, the addition of spring connectors to such
systems affect the response in a reasonable and predictable manner.
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5. CONCLUSION

A dynamic analysis and computer simulation were performed on two simple
block systems. The first system modeled was a single block with two attached springs
representing fasteners. The second system modeled was two symmetrically stacked
blocks connected together by two springs and resting on a horizontal base. Both
systems were analyzed for the case of tlee vibrations, no slip, and perfectly elastic
impacts.

The equations of motion were derived using Newton's second law and moment
considerations. This problem Is nonlinear due to the nonlinear terms in the equations,
and also due to the discontinuity associated with the transition from one pole of
rotation to the other pole of rotation during impact of the bottom block with the ground
and Impact of the top block with the bottom block. Thus the system motion was
considered In terms of four main regimes of motion where the motion within a regime
was continuous and the system motion was plecewise continuous, A linearization
process was applied to the four main regimes of motion only and transition equations
were developed to account for the physical discontinuity associated with the transition
to different poles of rotation. This linearization process enabled the resulting
equations to be uncoupled with modal analysis techniques and analytic solutions to be
determined. Using this modal analysis technique resulted In Independent, second
order equations with Inertial and stiffness coefficient matrices comprised of geometric
and physical parameters only. Thus a parametric study was performed in terms of the
mass and stiffness variations.

It Is shown that the addition of fasteners, represented as springs of variable
stiffness, affect system response In reasonable and predictable ways. The SDOF
system behaves as a simple harmonic oscillator between impacts and the addition of a
viscous damping mechanism is used to account for the energy dissipation due to the
transition.

It is also shown that the response of such a system is a weak function of the
stiffness parameter. The 2DOF system also responds in a reasonable fashion. It is
shown that the spring stiffness parameter plays no role during transition and is at best,
a minimal function in terms of system response. In fact, the system response of the
SDOF case is affected more by spring stiffness variations than the 2DOF system.

The methodology used In this report is a viable way to handle the extremely
complex dynamical equations developed for these relatively simple cases. In
particular, modal procedures enabled analytic solutions to be determined and
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implemented within a computer code to generate the time histories, This report also
Illustrated the need for a more In-depth look at transition and its importance to

* properly account for energy dissipation.
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APPENDIX A - SAMPLE DERIVAI[ION OF EQUAIION OF MOTION

To further illustrate the process, a sample derivation of the equation of motion
for case 1 will be shown.

/

B2

C2 P

Q2

C,

Al0 x

FIGI= A. 1 CASE I

The equation of motion for the top block was derived first by recognizing that the
dynamic moment of block B2 , § (Q2 , B 2/e) is equal to the sum of the moments of
the forces acting on block B2, with respect to the inertial reference frame 8.

S(Q 2 ,B 2 /e) - M (Q 2 9 {,9 2 -B 2 }) (Al)

Point Q2 was chosen to simplify the derivation since the contact forces acting on block
B2 act through point Q2, therefore the moment of those forces are zero at point Q2.
Also the bar symbol above B2 in the RH- of equation Al means forces external to BZ,
thus the expression {B2 -4 B2) symbolizes the forces external to block B2 that act
on block B2. Now consider thecLHE of equation Al first. By definition,

4

(Q 2 , B 2 /E) - dt[g(C 2 , B2 /e)] +MQ 2  9 2×r (C 2 /e) (A2)
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where O" (C, B /c) is the moment of momentum (angular momentum) of block B2
about point C2 with respect to Inertial reference frame E and g (C2 /e) is the
acceleration at point C2 with respect to reference frame e. The moment of momentum
is defined by equation A3 in general and, for this particular case, results in equation
A4 (see Appendix B for mnore detail on moment of momentum).

gi (A, S/C) = mSCAGs X V (Qs/1) + IS (Qs S) , (S/WE)

rAQ × Xv (S/I) >mSCQsGs (A3)

g(C2,B2/0) - Cj I 'b2 /z (A4)

The acceleration I (C 2 /e) isimply determined by equation A5 below,

d 2

W(C2 /E) I [C 2 /)] I (A5)

thus g(C 2 /) -.• [--bl +2alj+ (b, - 11) L + x20 + Y2-V] l using2hdu

Figure 3 where the coordinates x2 and Y2 have their origin at Q2 of block B2, i.e,,
equivalent to the parameters n2 and h2, respectively, After taking the derivative twice,
the resulting expression for acceleration Is presented in equation A6.

G(C2/e) - ((b 1 1 )•-2a 1 62 )j- ((b- 1 ) 62 + 2a 1 6)'

+ (x2 L- y2 2 ) Y- (X2d +y 2 b)Y

So, after making these substitutions into equation A2 and performing the cross product
multiplication, the dynamic moment Is explicitly presented in equation A6 below.

•(Q 2 ,B 2 /C) IIB2I+M2(X2+Y2)] k + 4r2(04_62)alZ

+ m2 0+2) (bl 11) (x2 - Y2 )sin(a- 0)

+ m2 (+ 2 )(bl-l 1 )(x 2 +y2) cos(a-0)Z (A6)
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Now, considering the RHS of equation A1, the sum of the moments of the forces
acting on block B2 will be further delineated into contact forces (surface forces) and
body forces (in this case, gravitational fields only).

MW(Q2, f{B 2 - B2) )-M (Q2 , {B 2 -'> B2 ) C) + M (Q2 , {B2 -> B2) g
(A7)

Considering the first term on the RHS of equation A7, the contact forces acting on
blcmk B2 consist of the force generated by the contact with block B1 at point Q2 and
the spring force R2 acting on block B2 at point P2. Since the moments are taken about
i'xint Q2, the forces acting through this point contribute no momentsl The moment at
point Q2 due to the spring force is given by equation AS.

9 (Q 2, (82-4 B2 }C) -- rQ2p x k2 Cpp, (A8)

where k2 is the spring stiffness constant and rp~p, is the spring displacement such

that rp 2p 1 - k2 [rGP, -CGP 2] - k2 [ (11 +12)1- (b2 + 12)/y] thus,

9 (Q21 (B2 -ý B2} c) -k 2 (l1 + 12) (b2 + 12) sin (a -B) Z (A9)

Now the second term on the RHS of equation A7 represents the moment of the
field or body forces acting on block B2 which, in this case, Is gravity.

Mri (Q 2, {B 2 -4 B 2} g) - Q2C2 X m2- m2g (y2 sinct -x 2cosa) Z (AIO)

So substituting equations A9 and AlO Into equation A7 gives the correct expression
for the sum of the moments of the forces acting on block B2.

ff(Q2V (B2 -- B2 }2) " -k 2 (11 +/2) (b 2 +1 2 ) sin(ca-0)Z

+ m2 g(Y2 sinct-x 2 coscc)Z (All)

So to get the explicit expression of equation A I, i.e., the equation of motion for block
B2 in case 1, equations A6 and Al 1 are substituted2 into equation Al and slightly
rearranged for convenience. The equation of motion is presented in equation A 12.
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LlC,+m2(x'+y')]d~Z + 42 +2aA

+ m 2 0+62 ) (bl - 1 ) (x 2 -Y 2 ) sin (a-0)Z

2
+ m2 (0 +2) (bI 11 ) (x 2 +Y 2 ) cOs(a Z),

".-k 2 (l + 12) (b 2 + 12) sin (oL -0)Z+rn2g (Y2 sina -x 2 cosa)Z (A12)

Note that this equation differs slightly from equation 13b since the terms on the LHS
are grouped differently, and hii this derivation, the parameters x1 , yl, x2 and Y2 were
used in place of n, h], n2 and h2, respectively. However, the equations are
mathemiatically equivalent.

To find the equation of motion for block B, the same procedure Is used realizing
that there is an additional contact force at point Q, due to the weight of block B2
resting on block B1.

•(G 1 ,Bi/e) - M(G 1, ({ -- B1 }) (A13)

Solving for the LHS side of equation A13 first arid by definition,

(G1, Bile) - A Ld (C 1 , Bile)]I G rn1// X) (A14)

Utilizing the genernd expression for moment of momentum results In equation A15.

.V (C.19B Ile) d ['EiCldzL IBC6 (A 15)

The expression for the acceleration term In the moment of momentum equation Is,

d22
o(C 1 /e) - A[r(C.L/e)J -ýe[OI1 (A16)

or explicitly

2 2 .2
0(C 1 /e) -, [XIl++y lil - (Xl -yI6 2 )j.- (y,+ xlxO )) (A17)
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So, after some mathematical manipulations the LHS of equation A13 is,

-(,B E [IBIC + il (Xi + YI)IoZ (A18)

Now the RHS of-quation A13 is the sum of the moments of the forces acting on block
B1 and can be further categorized as surface and body forces, as shown below.

O(G , ( B IBL)-.(G , { B c}) + Y t(G , I -- 4B I } )

(A19)

where

M(G 1, {B--B 1 }g) - C X mlg - mlg (ylsinE0-x 1 cos0) (A20)

M (GI, B --- B1}C) - rGQa X F12 +r GIPX62 (A21)

where f 12 is the contact force on block B1 due to block B2 and .?2 is the force due to
the spring interface. The spring force is proportional to the relative displacements of
both blocks and is given by R2 = k2 [ (b, + I) y - (b 2 -12) iI. The contact
force F 12 is more complicate and can be found-by performing a force analysis on
block B2.

.2 .2Ff12" ((b +12)'-2alO) " ((bl-/1)6 +2al'O-k2b.'))

+ (x2 b - y2 d2) Y - (x2 62 + y2 t + k2 (b 2 + 17) ) Y -m 2g9Y (A22)

So utilizing the expression for the spring force and the contact forces (equation A22),
in conjunction with equation A20, results in an explicit expression for equation A19.

M(G 1, 0B" -4-810) -- m 2 [ (b1 -1 1)2 + (2al) 2'Z

-m 2 g [ (bl-l 1 )csOs -2alsinG]. + k2 (b 2 + 12 ) (11 +1 2 )sir (ac- 0) z
S"m~~~Y2<[Y2 ( bj- I,) -2x2 a, ] sin (OL- 0) - Ix2 (bl- W: +2 y2aJ]CO8' (ax - 0) )a• Z

"-m2{[x 2 ('b" -1)+2y 2 a1] sin (a - 0) +[Y2 (b l I) -2x., all cos (a - ) z

+ mlg[ylsinO-xlcosO]]. (A23)
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Now, substituting the expressions for equations A1S and A23 into equation A 13, gives
the explicit expression for the equation of motion of block B1 .

IB)C1 + ml (X1 2 + Y)+m 2 [ (bl11 )2 + (2a) 2 ] )"0

"-im2 [Y2 ( b, - ll ) - 2 x2 a, ] sin(a-0) - [x2 (b - 11) +2 y2 all cos(a-0) } Z z

2Z2

- m2 [x2 (b- 11 )+2 y2 aJsin(c-)+[y2(b,- 1 -2x 2 a,5cos(a-O)}dL z

*I m, h1 g + 2. m2 a, g ] sinO Z - K2 (b2 + 12) 11 + 12 )sln(a-6) Z

-- I rnlng + m2 ,g(b-1-)Jcos6Z (A24)
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APPENDIX B - MOMENT OF MOMENTUM

The assumption of conservation of moment of momentum for the derivation of
the transition equations is necessary for the analytic treatment of this problem and to
avoid using an arbitrary "coefficient of restitution" to account for the energy
dissipation during transition. The proof is presented below.

First, derive a general expression for the moment of momentum of some
arbitrary rigid body S about an arbitrary point A that can have a velocity relative to the
inertial reference frame C as shown in Figure B.1 below. This is defined by the
expression
p (A, S/1E) which, by definition, is given by equation B1.

(Bi) g (A, S/e) = rA,, x y (P/e) dm (P)

S

0s

FIGURE B. 1 - Moment of Momentum for an Arbitrary Body S

Note that point P is some arbitrary fixed point in S, as is point Q, which is somý.. pVint
of body S where the inertial properties, Is(Qs,S), are known. Point Gs is the center of
mass of body S and the total mass is given by ms.
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Now W(Pe) ~ j£dKSLd~QP

where Y (Qs/e) = n dOQ and - P --IV (S/E) X rQ~p

so W(PiE) - Y(Q/W3 ) + IV (S/8) X CQsP

thus g(A, SIE) , JfAPX[Y (Q$/SC) +ly(S/I) XrQPdAdm (P) or

S

g (A, S/e) frAp x y(Qs/e) dm (P) +JAP X [,'"(S/E) XCQýpdr (P)

S S

but CAP = rCAG,Q + fGP and rAP C= rAQs + rQsP

so g(A, S/le) -"fAGsd+(P1 x×y(QS/e,)+dmn(P)
S

+ fA [ r QS + r.CQsp]X [IV(S/IC) Xr.Qsp]dn(P)or

S

(B2) _g (A, SAO) -' rAGsdm (P) x y (QSIC) +frGPdm (P) X y (QSI/-)
S S

+ JCAQX> [IV (S/e) X rQpldm (P) +frQS1P IVY(S/E) X EQp]dm (P)
S S

Now for a conservative systetn, i.e., point P fixed in body S, the displacement vector

CrGsP does not vary so frGsPd, j (P) -01 Also frCAGsdnm (P)= MSrEAGs
S S

and rAQs X [l (S/c) X cQsp]dm (P) EAQs X V (S/C) x fr-Qpdm (P)

$ S

58



since rAGs, LAQS and IV (SIc) have no dependence on dm(P). Now by

definition, mSEQsGs = ,rQspdm (P) (def. of mass center)
S

and the mass moment of inertia is defined as IS (QS, S) l (S/C) in equation A3.

(B3) Is(Qs, S)y(SIC) = JrQ×PX [1(S C) XrQP]rdm(P)
S

so making these substitutions into equation B2 gives the general equation for moment
of momentum, as shown in equation B4 below.

(B4) g(A,S/le) = mSrAGs X× (Qs/1) +Is(Qs, S'IV(S/C)

+ CAQs X V (SIC) X Mr,.Qsr s

Now, with this general equation, the 2DOF system can be analyzed but the question is
how to apply it to the system of interest? At what points and which blocks can the
principle of conservation of moment of momentum be applied? Realizing that two
independent equations are required to solve the transition problem in closed form and
that there are three possibilities - one equation for each block and the system equation
- the following proof is offered to show where and how conservation of moment of
momentum can be applied to this particular system.

Consider Figures B.2 and B.3 below, which represent a transition from case 1 to
case 4, i.e., a 0 - transition.

Ar, B 2 BB2

C2 p aQ 2P
Q2B 22

Q, P1

C, C,

FIGURE B2 - CASE 1 FIGURE B.3- CASE 4
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Definitions: ., Moment of Momentum (angular momentum)
P - Inertial Reference Frame
E- System consisting of block B1 and block B2 in inertial reference

frame E, i.e, 4- B U B2
C1 - Center of mass of block B1
C2 - Center of mass of block B2

- Time immediately prior to transition
tf - Time immediately after transition

First consider conservation of angular momentum of the system about point G2 during
transition from case 1 to case 4. For this assumption to be valid, the following
condition must be true.

(B5) f (G 2, 1/0) - constant as 0 -> 0,

which is mathematically equivalent to equation B6 below.

(id6) 1[ (G, /) =0

but dt[q (G 2 , Z/E)]I = a (G 2,1 /) where (G 2, L/e) represents the

dynamic moment of the system E about point G2 with respect to reference frame E.

Now the dynamic moment 5 (G2, Z/c) is equal to the sum of the moments about

point G2 of all the external forces acting on system I as shown in equation 137.

(B7) • (G 2, X/e) = M (G 2, {(' -- E) thus

(Bg) [9(G 2 ,L'/ E)] (2

and integrating this expression from tj to tf to get an equation satisfying the condition
given in equation B5 results in equation B9.
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tIf
(B9) 9 (G 2, "/E) fM 72 {(1 - } ) dt - constant

tj

But the moments of the external forces can be further delineated into the contact forces
acting on the system and the body forces (gravity) as shown in equation B10.

(BO)M (G2, (E -Z}) = M(G 2, {(E-- E) c) +Mf(G 2, {Z.-_E)g)

Now since all the contact forces can be considered during impact to act through point
G2, then the moment of those forces about point G2 are obviously zero. Also during
impact, i.e., as tf- t -+ 0, all of the body forces (gravity) are not varying, thus

tf

M(G 2, {,-4-- c) = 0 and fY (G 2, {,-4- Eg) -constant so
tj

tftif

JM(G 2, {T-4 E)dt = fM(G 2 , I- g) -constant and
tj tj

conservation of moment of momentum of the system about point G2 is satisfied!

Now consider conservation of angular momentum for block B2 about the pole of
rotation, point Q2. The angular momentum of block B2 about point Q2 with respect to
the inertial reference frame e is given in equation B 11 and comes from the application
of equation B4 to this specific case.

(B 11) (Q2, B2 /E) = m2rQ2c2 X Y (C 2/e)

+ 1 (C2, B2 ) IV (B2/e) + rQ2C2 X ly (B2 /c) x m2 rcc,

Using equation B4 it Is easy to show that:

(B12) g (C2, B2/0) = m2 tCC2 x X Y(C2 /E) + I (C2 , B2) IV (B2 /E)

+ CC2 x jv (B2/E) X m2rC2CC
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Realizing that rC2C2  = 0, and combining equations B 11 and 1B12, gives

(B13) 9 (Q2 , B2 /e) = m2rQ2C X Y (C2 /e) + Y (C 2, B2 /e)

For angular momentum of block B2 about point Q2 to be conserved, the following
condition must be true.

(B14) 9 (Q2, B2/e) - constant during transition

Using the same derivation as for the conservation of angular momentum of the system,
the following equation is found,

(BIS) d [g (Q2' B2 /E)] - M (Q21 (N2 -4 B2} ) and Integrating

(B 16) [9 (Q2, B2/e)] =fly(Q21 (B2 -4B2})dt andasbefore
I tt

Mf(Q 2, (B2 -B 2}) = W 2 0 {B1 ->B2ý)+M(Q2 9, f ,2 .- B2)g)

and since all of the reaction forces produced during transition pass through point Q2.

the moment of these forces at point Q2 is zero. Thus

' (Q 2, {B 2 -4 B2}) = W(Q2, 0B2 -> B2)g) only soequation A16is

tf
(B17) g(Q 2 9 B2 /0) J M(Q 2, {0 2 -4'B2 } 8 )dt

tj

but as tf- t, --> 0 for transition the body force (gravity) does not vary so
ti

(B18) 9 (Q 2$ B2 /0) = fJ (Q 2, {#2 -4 B2}) ) dt - constant
tj

and conservation of angular momentum of block B2 about point Q2 is satisfied.
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Consider block B1 and its angular momentum about point G2, as was done for
the system's angular momentum derivation. The system moment of momentum is
equal to the sum of the moments of momentum of each of the blocks that comprise the
system.

(B19) g(G 2 , /e) = g(G 2 , B 1 /e) +a(G 2, B2 /e)

From equation A5, 9 (G 2 , E/0) - constant, so using the A symbol to represent the

change in angular momentum as if- ti -- 0 allows the following derivation.

(B20) Ag(G2 ,1/0) = Ag(G 2 , B 1 /c) +Ag(MV2 ,B 2 /0) = 0

since the system angular momentum Is conserved. Using equation B4 at point G2,
equation B2l can be derived after some manipulation,

(B21) Ag (G 2 , B 2 /e) = A [p (Q 2, B 2 /e) + m2G2Q x c (C 2 /E) I or

(B22) Ag (G 2, B2 /E) = Ag (Q2, B2 ./e) + m2r XGQ AY (C 2 /A)

but Ag (Q 2 , B 2 /) = 0 from equation B18; therefore, substituting equation B22

Into equation B20 results in the correct expression for the change in angular
momentum of block B1 about point G2 during transition.

(B23) A9 (G 2, B1 /0) = -m 2 G2Q x Ay (C 2 /e)

Thus there is no conservation of angular momentum about point G2 for block B1I
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